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Abstract

Box plot is a compact representation that encodes the minimum,

maximum, mean, median, and quartile information of a distribu-
tion. In practice, a single box plot is ttrawn for each variable of

interest. With the advent of more accessible computing power, we
are now facing the problem of visualizing data where there is a dis-

tribution at each 2D spatial location. Simply extending the box plot
technique to distributions over 2D domain is not straightforward.
One challenge is reducing the visual clutter if a box plot is drawn

over each grid location in the 2D domain. This paper presents

and discusses two general approaches, using parametric statistics
and shape descriptors, to present 2D distribution data sets. Both
approaches provide additional insights ,.:ompared to the traditional

box plot technique.

Key Words and Phrases: parametric statistics, shape descrip-

tion, uncertainty representation, probability density function.

1 INTRODUCTION

In the 1970's, John Tukey had a great influence on the visualization

of data distributions by inventing the box plot [8]. The box plot
was and remains an effective means to see how a set of data or a

variable is distributed. Each box (also known as box and whisker)

represents one distribution. It is a compact representation that en-

codes minimum, maximum, mean, median, and quartile informa-
tion, summarizing what is essentially three dimensional informa-

tion in two dimensions. From their origination in the statistical lit-
erature, box plots are now used in most scientific disciplines and

are widely available in statistical software packages.
Geographical problems involve variables situated in space (213).

Modem mapping activities sometimes involve predicting the value
of one or more variables for every spatial unit. For each spatial
unit, a complete probabilistic statement about the variable at that

location is desired. If there exists a probability distribution for each
unit in the map, there are four dimensions of information. These

are the spatial dimensions (x and y), the dimension of the variable

being mapped and finally the probability dimension (the probability
density is equal to or greater than 0). Can the insight used to come

up with the box plot be extended to this geographical problem to
visualize spatially varying probability distributions?

Prominent algorithms for generating probabilistic statements
about geographical phenomena are geostatistical conditional sim-

ulations [4, 6] and Monte Carlo methods with physics-based mod-
els [3]. Probabilistic statements may also be formed from sensitiv-

ity analyses on different model-input parameters or other statistical
methods that characterize uncertainty. Whatever the source, visu-

alization of 2D distribution data sets is a new challenge. Simply
extending the box plot technique to distributions over ,.D domain is
not straightforward. One challenge is reducing the visual clutter if

a box plot is drawn over each grid location in the 2D domain.

The main visualization requirements that are usually desired
from such spatial distribution data sets include: (a) a sense of what
the distributions look like over the field _md (b) any special features

of the distribution data that may not be immediately obvious with-

out some feature extraction step. This paper addresses the first re-

quirement. More specifically, just as pseudo-coloring a scalar field
gives an overall impression of a scalar field, we want to provide a
similar overall impression of a 2D distribution data. This can also

be seen as an extension of box plots over a 2D spatial domain.

Existing tools such as those from image processing and geo-

graphic information systems (GIS) packages typically do not sup-
port distribution data sets. For example, GIS packages deal with
static 2D data primarily as layers that are displayed one at a time

or "stacked" one on top of another. What is needed is the ability to
process all the distributions as a single set. Furthermore, it is desir-

able to probe and query the set of disu'ibutions about the properties
of features within a region.

This paper presents a number of methods and analyses to help
visualize 2D distribution data sets. In the next section, we present
some methods that assume the distributions can be described well

by a few statistical parameters. We then describe some basic density
estimators that can be used to construct distribution data sets from

raw data. Subsequent sections explore more involved methods that

describe the shape of the distribution at each point, where a few sta-
tistical parameters fail to do the task. We present these techniques

using 2D distribution data sets from two application areas.

2 APPLICATION DATA

In this paper, we work with two distribution data sets from Earth

science, a terrestrial and an oceanographic data set. The first data
set is from a synthetic example constructed using a small region

in the Netherlands imaged by the Landsat Thematic Mapper [21.
Imagine that the biophysical variable to be mapped across this re-

gion is percent forest cover. Say there are ground-based measure-
ments of forest cover from 150 well-distributed locations through-
out this region as well as space-based measurements from Landsat

of a spectral vegetation index. This spectral vegetation index is
related to forest cover in a linear fashion but with significant unex-

plained variance. Further assume that the ground area represented
by a field measurement is equal to the area represented by one pixel.

A distribution data set was generated using this information: con-
ditional co-simulation It, page 124] using both ground measure-

merits and the coincident satellite image. The data set consists of
101 × 101 pixels and 250 realizations. Values range from 0 to 255,
rescaled from % cover.

Our second data set is from an ocean model covering the Middle

Atlantic Bight shelfbreak which is about 100 km wide and extends
from Cape Hatteras to Canada. Both measurement data and ocean

dynamics are combined to produce a 4D field that contains a time
evolution of a 3D volume such as temperature and salinity. To dy-
namically evolve the physical uncertainty, an Error Subspace Sta-

tistical Estimation (ESSE) scheme [71 is employed. This scheme is

based on a reduction of the evolving error statistics to their domi-
nant components or subspace. To account for nonlinearities, they
are represented by an ensemble of Monte-Carlo forecasts. Hence,

numerous 4D forecasts are generated and collected into a 5D field.



Forthispaper,weextractthe top layer of the 3D ocean volume,

and only look at the Monte-Carlo forecasts of this 2D slice for a
given instant in time. This gives us the rt_w data for a 2D distribution

data set. The field value is for sound speed and is derived from the
other physical field values. The dimension of this data is set 65 x

72 pixels with 80 values at each point.

3 PARAMETRIC APPROACH

The problem can be stated as follows: _ziven a 2D distribution data

set f(i,j,t), where i = t,... ,N, j = 1,... : M, and t is a real
number, (a) analyze the probability density fimction at each pixel

(i, j) and (b) give an overall impression of the entire f(i, j, t).

A first step toward addressing this problem is to assume all the
pdfs are parametric so that all the distributions can be summarized

using a concise set of statistical parameters. For example, the nor-
real or Gaussian distribution can be completely described by two

parameters, its mean and standard deviation, and it has a a sym-
metric bell-shape with roughly 67%, 95%, 99% of the population

within I, 2, and 3 standard deviations. It is then relatively straight-
forward to visualize the summary statistics. Kao et al. [5] calculated
first, second and third order statistics for each distribution and visu-

alized them on different layers. In particular, standard deviation or

interquartile range can be used as uncertainty metrics. The image
plane can be colored according to any of these statistical measures

or metrics and viewed separately. Alternatively, they can be simul-
taneously displayed in the same viewing space so that the scientist

can study relations among the measures Figure 1 shows four staffs-
tics for the satellite-image derived distribution data set. The bottom

image plane is colored based on the mean, the upper plane is de-
formed by the standard deviation and colored by tile interquarffle

range, and the heights of the vertical bars represent the absolute
value of the difference between mean and median values (only val-

ues above 3 are drawn). For reference, the vertical bars are also
colored by the mean field shown in the image plane. Five color

bands were used for the figure; cyan denotes low values of forest
cover and red denotes high forest cover. The flexible selection of

thresholds for the vertical bars allow the detection of extremes by

different criteria, which would be application-specific. In this dis-
tribution data set, the regions with the lowest and highest values of

forest cover also appear to be the most uncertain, judging from the
"hills" in the deformed plane and the arched ridge that runs from
left to right near the top of the image.

Summary statistics included mean, median, standard deviation,

interquartile range, kurtosis and skewness. However, this ap-

proach is limited because distributions tfften deviate from paramet-
ric shapes. Summary statistics are still useful for describing some
but not all aspects of nonparamen'ic distributions. Cases where

parametric sununaries are less informative occur where dislribu-
tions have more than one mode. For example, one can easily con-
struct a bimodal distribution that has the same mean and standard
deviation as the normal distribution.

Visualizing parametric statistics of 2D distribution data sets is
relatively easy to implement, easy to understand since the concepts

are well known and can be incorporated in most GIS packages. In
this paper, we go beyond these parametric descriptions to seek ro-
bust technique that allow the visualizaffon of the larger class of non-

parametric distributions.

4 DENSITY ESTIMATION

Sometimes distribution data comes from sets of possible values that

have been generated from a model or s_mulation. Raw data of this
type is of the form z(i, j, s), where i and j index the pixel and s is

Figure 1: This figure illustrates how parametric statistics from the

2D distribution data set can be visualized in different layers. In the
fignre, four parametric statistics are visualized using the satellite-

image derived distribution data set. The bottom plane is the mean
field colored from non-forest (cyan) to dense forest (red). The upper

plane is generated from three fields: the surface is deformed by the
standard deviation field and colored by the interquartile range; and

the heights of the vertical bars are from the absolute value of the
difference between the mean and median fields colored according to

the mean field on the lower plane. Only difference values exceeding

3 are displayed as bars to reduce clutter.

a sample value (or realization) in the set of possible values. Vari-
ous density estimators exist to create probability density functions

(pdfs) from these sets of possible values. For example, the his-

togram is a very common density estimator, though it does not pro-
duce a mathematically valid pdf. More accurate methods include
the naive estimator and the kernel estimator [9]. More formally,

given a set of data values {zi,i = 1,... n} density estimation
is the construction of an estimate of the function f(t) from {zi}.

Though the histogram is widely used, it is sometimes unsuitable
for statistical analysis because of its C'° continuous property and

the fact that it is very sensitive to the bin width used. In this paper,
we use a different class of estimators, the kernel estimators, which
are C l continuous functions.

We first describe the naive estimator which resembles a his-

togram and provides a basis for understanding the kernel estimator.

A naive estimator can be presented by

1 n 1 t - zi
f(t) = n E -_w(_-_),

i=l

(l)

where w(t) = 1/2 if It[ < 1 otherwise, w(t) = 0. Like traditional
histograms, naive estimators are C O continuous functions. They
also depend on the choice of h, known as the smoothing parameter,

just as histograms depend on the bin width.

Kernel esffmators replace the function w(t) in the naive estima-

tor with a kernel function K(t) that satisfies the following property:

_ K(t)dt = 1 (2)
oo

If the kernel function K(t) is C _ continuous, then kernel estimators
are also C a functions. Examples of kernel functions that satisfies

the property above include:



Epanechnikov, for Itl < v_

Gaussian

(3)

1 _I]/2)t2
K(t) ----_e (4)

Kernel estimators are also influenced by the smoothing factor h.

As the name implies, this parameter controls the overall smooth-
ness of the estimator. As h decreases, the kernel estimator becomes

more sensitive to slight variations in the distribution; as h increases,
contributions from more neighboring points are coalesced to form
a smoother kernel estimator. If h is not chosen appropriately, the

shape of the estimator can vary significantly, and even change the

modality of the pdf. e.g. from unimodal to bimodal
Rather than letting the user specify the value of h, a data depen-

dent h can be derived [9]:

h = 0.9 × rain(std, deviation, inte'.,'quartile range/1.34) nj- _

(5)

For our given raw data z(i,j, s) with n_ samples at each point,

we calculate either a Gaussian or an Epanechnikov kernel esthnate

at each i, j location. We use Equation (5) to determine the smooth-
ing factor h for each kernel This approach of selecting the smooth-

ing factor works well when we have a large number of kernel esti-
mates to compute. These kernels can be evaluated at different val-
ues oft. If we evaluate it at k equally spaced t values, then z(i, j, s)
is transformed into an N x M x k volume, V, where each voxel is

a density estimate value. We refer to this 3D representation as the

density estimate volume. Standard volume visualization techniques
can then be applied to this density estinmte volume.

5 VISUALIZING THE DENSITY ESTIMATE

VOLUME

The 3D density estimate volume is a di._cmte sampling of the pdf at
each pixel and will be the starting point for a number of visualiza-

tion options presented here. All the figures in this section use the

same data set as in Figure 1.
A simple and quick way to visualize the 2D distribution data is to

allow the user to probe and interrogate the pdf at each point. Figure

2 shows three different representations of the data at a probe po-
sition identified by the cross-hair: (1) the raw data (the lower plot

on the bottom), (2) the histogram of the pdf (the middle plot), and
(3) the kernel density estimate of the pdf (the upper plot). These

plots would change as the user moves the probe interactively. How-
ever, this approach can only depict a single pdf at a time and it may

be difficult to determine how the distribution changes from neigh-
boring pixels. This challenge can be tackled if we first lreat the

pdfs computed at all pixels as a vohm_etric data set and then use
several existing volume visualization techniques on the density es-
timate volume.

5.1 Cutting Planes

The most straightforward method in volume visualization is to dis-
play cutting planes inside the density estimate volume V. Sup-

pose i = I for some constant I, then the cutting plane correspond-
ing to V(I,j, k) would show the pdf for pixcls (I,j = 1... M).

Hence, from the cutting plane, we can easily see how the distribu-
tion changes along this row of pixels. Similarly, suppose j = J for

some constant J, then the cutting plane corresponding to V(i, J, k)

Figure 2: The image on the fight shows the mean field of the 2D
distribution data set. The three plots on the left show more infor-

mation about the distribution at the cross-hair. The bottom plot is

of the raw data values making up the distribution. Each line cor-
responds to one data point, and the line lengths are proportional to
the data value. The middle plot is a histogram of those values. The

top plot is a kernel estimate of those values.

would show the pdf for pixels (i = 1 ... N: J). Hence, the cut-
ting plane would show the variation of the distribution along this

column of pixels. The cutting plane can be positioned anywhere
in the volume. The most common choice is to position the plane

fight above the slice (cut). As the slice is swept across the field, the
cutting plane would move together with the slice. Another possi-
bility which we found useful for visualizing distribution data is to

keep the cutting plane stationary on one of the faces of the density
estimate volume. The natural choice is the farthest face from the

current view that is parallel to the slice. This cutting plane appears

as a wall on the volume where density estimates above the slice are
displayed (see Figure 3). The height of the walls corresponds to the

discretization granularity of the density estimators. For this data,
there are 150 evaluations for each pdf (k = 150).

Note that the axes of the density estimate volume are made up of
two horizontal spatial axes and a third vertical sample value axis.

Hence, one must exercise caution when interpreting cut planes of
different orientations. With vertical cut planes such as those in Fig-

ure 3, the vertical axis corresponds to different sample values. With
horizontal cut planes such as the one in Figure 5, we are at the

density for a particular sample value over the entire 2D domain.
Arbitrary cut planes are possible, but additional care must bc used
in their interpretation.

5.2 Local Surface Graphs

In studying 2D distribution data, one of the tasks is to visualize

the modality of the distributions. Though cutting planes are fairly
straightforward to understand, the modality of the distributions may

not be depicted clearly. The presence of peaks in the distribution
implies the presence of local maxima and minima. Using color

mapped cutting planes, one would look for color streaks or narrow
color bands to identify these peaks. Figure 3 shows a narrow color

band that horizontally runs across the cutting planes and, at some
locations, there is a shorter and fainter streak below the main color
band. This indicates that the distribution is bimodal at these loca-

tions. Where there is only one color band, the distributions at those

locations are unimodal. Though color mapped cutting planes may



Figure3:Cuttingplanes.Theleftwallshowsthepdfsalongthe
sliceindicatedbythebluelinewhile the right wall shows the pdfs
along the slice indicated by the red line. The bottom plane is the
mean of the pdfs. The height of the walls is 150 which corresponds

to the number of function evaluations for each pixel on the bottom
plane. One can see that the distribution is mostly unimodal as in-

dicated by the narrow color band that runs horizontally across both
cutting planes. Also note that some of Ihe pixels on the blue slice

(left side of left wall) and also some pixels on the red slice (right
side of right wall) appear to be bimodal. For example, the point

under the cross-hair appears to be bimodal with a smaller peak near
the bottom plane because the pdf for this point (along the white ver-

tical line on the two walls) intersect two distinct non-blue regions.

Figure 4: Local surface graphs. The surface graphs G(93,j, k)
and G(i, t5, k) for the same cutting planes shown in Figure 3 are

displayed. The surface graphs are colored using the density esti-
mate. Note that the peaks (shown as ridges) are now much easier

to see. The vertical curves drawn on top of the left and right sur-

face graphs are the actual plots of the density estimate at the probe
position (93, 15).

be useful to highlight the modality of the distribution, the technique
is sensitive to the color map used. Depending on the distribution,

some choices of color map may not be able to reveal the bimodal
part of the distributions. An alternative approach is to construct a

local surface graph so that the the moda!ity of the distributions will
be easier to see.

The surface graph is basically a displacement map. For a given
cutting plane defined by V ( I , j, k ), the surface graph G( I , j, k)

can be constructed by protruding points on the cutting plane by
an amount proportional to the density estimate at that point. Let
G(I, j, k) = (scale factor × V(I, j, k), j, k), where scale factor

is the height scale factor of the surface ,graph. This is illustrated in
Figure 4. If we let G(I, j, k) = (0, j, k), then the surface graph

would be flat and it reverts back to the cutting planc defined by
V(I,j, k). Overall, the surface graph offers several advantages

over the cutting plane technique: (1) it provides an accurate de-
piction of the roughness of the distribution, (2) it gives a 3D look

and feel of the distribution, and (3) it allows the changes of the
distribution across the row/column to bc seen easily.

So far, the cutting planes have beer, lined up across a row or
column of the 2D distribution. If one applies the cutting plane on

the 3rd dimension of the density estimate volume, then we get a
view of density estimate volume for the same evaluation point K

for all pixels. Figure 5 shows a surface graph for the cutting plane
V(i, j, 40). The magnitude of the density estimates for all points at

k = 40 are displayed as heights of the surface graph. Note that the
density estimate at the cross-hair is bim,)dal as shown in a graph of
the estimate shown in left upper plot.

Figure 5: The cutting plane V(i,j, 40 is depicted as a surface

graph. The heights of the surface _aph shows the relative mag-
nitude of the density estimates for all the points at k = 40.



5.3 pdf Isosurfaces

Both the cutting plane and the local surface graph techniques allow

the user to interrogate the density estimate volume interactively at
some specified row, column, or slice. In addition to knowing how

the distribution data changes along the selected row and column
profiles, we are also interested in seeing the global attributes of the
dislribution data inside the estimate vohmle. These include the lo-

cations and the number of peaks. Suppose that the distribution data

is unimodal and has roughly the same mean for all pixels in the data
set. Suppose further that for some value C, V ( i, j, k_) = C and
V(i,j, k_) = C where kr < ks are at the rising and descending

part of the peak. Then, the isosurface defined by V(i, j, k) = C

consists of two surface layers. The lower layer corresponds to
V(i,j, kr) (the rising part of the peak) and the upper layer corre-

sponds to V(i,j, ks) (the descending pm-t of the peak). The thick-
ness of the isosurface (i.e. the distance between the two layers)

corresponds to the width of the peak (see Figure 6).

(a) Top View (b) Side View

Figure 7: Direct volume rendering of the density estimate volume.

The transfer function attempts to map density estimates in a consis-

tent fashion as other images in this section - blue for low values and
magenta for high values. From the top view (a), we can see how the
distribution changes within the image. The prominent arch-like fea-

ture located near the top image shows that the distributions are quite

similar. The pdfs here tend to have a higher variance, longer tails,
and hence lower density estimates. From the sidc view shown in

(b), the bright blue spots underneath the main layer show locations
where the distribution is bimod',d.

Figure 6: The isosurface defined by l_(i, j, k) = 0.009 for the
density estimate volume. Notice that there are smaller isosurfaces
beneath the main isosurface. These locations show where the dis-

tributions are bimodal. The thickness, separation, and size of these

isosurfaces also provide an overall impression of the density esti-
mate volume.

5.4 Direct Volume Rendering

The density estimate volume is a good candidate for direct volume

rendering. The data are scalar and usu'ally on a r_uJar g_Sd. If
the pdfs of neighboring points are quite similar to each other, then
there is a good chance that direct vohmle rendering can identify

such clustering (e.g. see Figure 7). Conversely, if the pdfs are spa-
fially uncorrelated, then the direct volume rendering will not be able
to find significant structures and therefore lead to such conclusions

about the density estimate volume. Using the same data set as the

other techniques presented in this section, we found that this tech-

nique allows us to see the spatial arrangement of the peaks. The
ability to experiment with different color and opacity mappings is
critical in extracting such features. An intuitive mapping for opacity

is in direct proportion to the density estimate. However, a discontin-
uous mapping may also prove more useful in highlighting a range
of values of the density estimate volume.

Although volume visualization techniques allow one to interro-

gate and analyze the modality of the density estimate volume, we
are also interested in the shape description of the palls. In the next

section, we propose to characterize a pdf by its roughness. We first
describe the roughness parameters and introduce a peak hunting al-
gorithm, then we propose two visualization methods for displaying

the roughness parameters.

6 ROUGHNESS DESCRIPTION

Given a pdf obtained from a density e_stimator, our goal is to char-

acterize the pdf with a concise set of shape descriptors that can
be mapped and presented visually. Towards this end, we define a

roughness parameter for a pdf. The distribution may be very bumpy,

in other words it has many local maxima. In this case we say it has a
high roughness value. If the distribution has fcw local maxima, the
roughness is low. We quantify roughness as the nmnber of peaks in
the distribution.

We define two kinds of peaks, basic peaks and concatenated
peaks. A basic peak is an interval [a,b] such that densityfis concave

over [a,b], but not over any larger interval [9]. A concatenated peak
includes at least two basic peaks. We further classify both kinds of

peaks into two types, type A and type B (See Figure 8). Type A
peaks have the minimum density at the start of the interval and type
B peaks have the minimum density at the end of the interval. If the

start and end of the interval have the same density, then the peaks

are classified as type A. We propose the following procedure for
finding significant peaks in a distribution: First, identify the basic
peaks in the distribution. Next, we classify and combine these basic

pe_s into larger peaks. Finally, we count and record the locations
and heights of these large peaks.

The concatenation rules between the two types of peaks proceed
as follows,

concatenate(A, A) = A (6)

concatenate(A,B) = _ A
B(

if the start of A < the end of B
otherwise

(7)

concatenate(B, B) = B (8)



type A type A type B concatenate(A,B)

Figure 8: Basic and concatenated type A and type B peaks.

The concatenate(B, A) produces no new peaks, These operations
apply to both basic and concatenated peaks. The peaks to be con-

catenated must be adjacent to each other.

Algorithm: Peak Hunting Algorithm

Find all the basic peaks pkz, pk2,...,pk_, n is the number of basic peaks
for All parrs of consecutive peaks (both basic and concatenated) do

if they are both above the threshold then
do not concatenate them

else

if they are both type A peaks then
merge them into a concatenated p-_'_kof type A

end if

if the first one is type A and the seccnd one is type B then
merge them into a concatenated p_rakas defined in Equation 7

end if
if they are both type B peaks then

merge them into a concatenated p:,'_akof type B
end if

end it"
end for

The height of a peak is defined as the distance between the local

maxima and the higher of the left and right minima. We look at

the magnitude of the height to determine if a peak is significant or
not. First, we determine the maximum height among all the basic

peaks in the pdf. This is used as a point of reference for testing
the significance of a peak. Basic peaks are concatenated until no
more concatenation can take place. Then the heights of all the re-

sulting peaks are compared to the reference height. If the height of
a peak is more than a percentage of the reference height, the thresh-

old, then it is a significant peak. The percentage is introduced as a
user specified threshold and can range from 0 to 1. The number of

significant peaks is then used as a measure for the roughness of the
distribution at the pixel.

7 VISUALIZING ROUGHNESS

We use the data set from ocean modeling to illustrate how the
roughness parameter of the distribution data can be visualized.

First, we convert the ocean data set into a density estimate vol-
tm_e using an Epanechnikov kernel estimator with data dependent

smoothing parameter h and evaluated it 300 points. The resulting
density estimate volume is 65 × 72 × 300. The number, location,

height and width of the peaks are obtained by applying the peak
hunting algorithm to the density estimate volumes.

We propose two visualization methods for the roughness param-
eters. First, we quantify the roughness as simply the number of

peaks eount_,:.

R(i, j) = count,,j (9)

where R(i, j) is the roughness at pixel (i: j). Each pixel (i, j) is
colored by R(i,j). Rm_= and Rm_ are the maximum and min-
imum of the roughness among all pixels. The color assigned to

pixel (i, j) is linearly interpolated based on the color map shown in

(Figure 9).
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Figure 9: Roughness parameter using Epanechnikov kernel estima-
tor with data-dependent smoothing factors. The number of peaks

(in this case ranging from 1 to 5) are colored using distinct colors
as indicated by the color map. We immediately note that most of
the pdfs are unimodal except for those above the shelfbreak where

there is more mixing and variability in the physical variables. The
pd.f for the pixel under the cross-hair is shown on the right. This pdf

is counted as 2 peaks because the height of the small peak off the
leftrnost peak is below the threshold value of 36% of the maximum

height among all the basic peaks.

The number of peaks alone is not a precise representation of

the pdf's roughness. There are other factors that account for the
shape description. For instance, given two pixels P and Q, both

with one peak. The peak in the the first pdf may be narrow and tall
while the peak in the second pdf may be wide and short. Both will
however be assigned the same color using the visualization method
described above. Therefore, we introduce a second visualization

method which employs multiple parameters to show the roughness.
Besides the number of peaks, we also show locations, heights and

widths of the peaks.
The left and fight ends of a peak give the location of the peak

within a pdf. The height of a peak is the distance from that peak
to the higher of the left and right ends of that peak. The interval

between the two ends of a peak is the width of the peak. We com-
bine this information using a line glyph representation to show the
roughness of the density estimate volume. This is illustrated in Fig-
ure 10.

If the glyphs of all the pixels are shown together, it would be
heavily clustered. Therefore, we separate the glyphs into different

frames, each of which shows the line glyphs of pixels with the same
number of peaks. In Figure 10 (a)-(e) we show the glyph visualiza-

tion for pixels with one to five peaks respectively, and (t-) is for all
the pixels. From this figure, we can make the following observa-
tions:

1. The bluish line glyphs that are significantly longer e.g. in

frames (a), (b) and (f), lie above pixels that are over the shelf-
break. The wider peaks (and multiple peaks) 'also implies

higher standard deviation. This is consistent with the amount
of variability expected in those regions.
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Figure 10: Glyph visualization of roughness. Each pixel has a one or more line glyphs showing the location and width of each peak. The

lines are color coded by the height of the peak using the continuous color map below each frame. The bottom plane is similar to Figure 9 and

is colored by the discrete color map on the bottom. The white areas on the bottom plane corresponds to pixels with line glyphs being drawn

above it. Frames (a) to (e) show those pixels with 1 to 5 peaks in their pdf respectively. Frame (f) shows all the detected peaks in one image.

We can make the following observations from these images. Even in the busy frame (a), we can see that majority of the pdfs are unimodal,

and that most of them (the reddish ones) have peaks with similar heights and locations, and a smaller percentage (the greenish ones) have

peaks which are flatter and wider. Frances Co) to (e) illustrates that fewer and fewer points have multiple peaks in their pdfs, and that those

peaks are distributed over a wider set of s:maple values, and by necessity relatively flatter.



2. Excluding those pixels above the shelfbreak region, we can

observed from frames (a) or (f) that majority of the peaks are
of similar widths and across the same locations on the pdf.

3. In general, the lines of shorter lerlgth have redder color, and
longer lines have bluer color. The mtcgral of any pdf is always

one. Therefore, among the pixels with the same number of
peaks, the t_dler peaks are narrower. This can be seen in the
far edge of frames (a) and (f).

8 CONCLUSION

We have presented a number of meth(,ds that give an overall im-
pression of 2D distribution data sets. V_'ego beyond histograms for

constructing such data sets by employing a kernel density estimator
with a data-dependent smoothing parameter and representing the

resulting data as a volume. The representation has allowed a more
complete description of pdfs on a grid using reliable visualization
techniques such as iso-surface and volume rendering. In addition,

we have implemented nonparametric :_ummaries of the pdfs that
will be helpful for multimodal data.

There are a number of improvements that we are working on.

The peak hunting algorithm can still he improved. Towards this
end, we have looked at identifying significant peaks in the fre-

quency domain using Fourier transforms. However, finding the ap-
propriate frequencies to band limit the signal automatically across

different pdfs is not immediately obviotls. A more fundamental

challenge is to define an algebra or a s_3tof operations on distribu-
tions that will provide us a more formal method for carrying out
comparisons of distribution fields and feature extractions from dis-

tribution fields. Finally, we plan to extend our work to time varying
dislxibutions and to higher dimensionality.
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